Every content here is my original work.Creative Commons Licence
Universitas Scripta is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
Your cookies may be used by Google and mathjax. See Google's privacy policy.

Saturday, 25 May 2024

Point cloud Similarities

 Point to distribution:

p=(px,py)P(x,y)=12πσxσyexp{x22σx2y22σy2}

p=i=1Dpie^iP(xi)=(2π)D/2(i=1Dσxi1)exp{i=1D(xi)22(σxi)2}

Correlation Function for between one point distributions:

P(xi;x0i):=P(xix0i)

P(xi)P(xi;x0i)=(4π)D/2(i=1Dσxi1)exp{i=1D(x0i)24(σxi)2}

For two point clouds {pi} and {qi},

P(xi;{pj})=jP(xi;pji)

The correlation of two point clouds is

C({pj},{qj})=P(xi;{pj})P(xi;{qj})P(xi;{pj})P(xi;{pj})P(xi;{qj})P(xi;{qj})

We want to write P(xi;{pj})P(xi;{qj}) with P(xi;{pj})=jP(xi,pji).

C({pj},{qj}):=P(xi;{pj})P(xi;{qj})
=j,kP(xi;pji)P(xi;qki)
j,kexp{i=1D(pjiqki)24(σxi)2}

To maximize C({pj},{qj}) by shift of q, we need to ddΔqiC({pj},{qj+Δq}).

ddΔqiC({pj},{qj+Δq})ddΔqij,kexp{i=1D(pjiqkiΔqi)24(σxi)2}|Δq=0
=σxi22j,k(pjiqkiΔqi)exp{i=1D(pjiqkiΔqi)24(σxi)2}|Δq=0
=σxi22j,k(pjiqki)exp{i=1D(pjiqki)24(σxi)2}

In the same sense,

d2(dΔqi)2C({pj},{qj+Δq})|Δq=0
j,k[σxi4(pjiqki)24+σxi22]exp{i=1D(pjiqki)24(σxi)2}

We can do Newton's method using these 1st and 2nd derivatives.

No comments:

Post a Comment